Is Automated Counting Right for You?

Our founder, Dr. Jean Qiu, developed the Cellometer Auto T4 in 2005 after receiving a request for such an instrument from a customer at NIH, and we officially launched it at AACR 2006.  As we come up on the 10 year anniversary of the original launch of our first automated cell counter it got us thinking. When we created the first automated cell counter, we created the market for such devices and we were alone in the equipment space for 2-3 years before any other company came out with competitive products. (Imitation is the highest form of flattery, right?)  It was [...]

Novel Fluorescent Viability and Vitality Detection Method for Ale and Lager Yeast Fermentation using Cellometer Vision

It's White Paper Wednesday! Read our featured white paper: Novel Fluorescent Viability and Vitality Detection Method for Ale and Lager Yeast Fermentation using Cellometer Vision Automated cell counting methods can monitor yeast concentration and viability throughout fermentation to ascertain cell health and the amount of yeast to be pitched or repitched, all of which contributes to the quality and flavor consistency of the final product [1,2,3]. Analyzing physiological and metabolic characteristics of the yeast cells permits operators to efficiently monitor yeast viability and vitality for quality control purposes, which impacts long-term storage and other physiological stresses.     Download our white [...]

Cellometer assists in identification of PGRMC as a cancer stem cell marker and therapeutic target

The University of Kentucky investigated progesterone receptor membrane component 1 (PGRMC1), an often upregulated component in thyroid, breast, colon and lung tumors. PGRMC1 has been associated with drug resistance and is thought of as an indicator of prognosis. The researchers employed a variety of cell types to represent head and neck cancers, as well as oral, lung and ovarian cancers. These cells were exposed to PGRMC1 inhibitors. The Cellometer performed cell counts with Trypan Blue. The PGRMC1 inhibitors successfully prompted cancer stem cell death even when other anti-cancer agents did not. The researchers suggest using PGRMC1 as a cancer stem [...]

Cellometer M10 studies evolutionarily-conserved proteins across species

The Max Planck Institute of Molecular Plant Physiology (Germany) investigated the evolutionarily-conserved proteins REIL 1 and 2 in A. thaliana and yeast cells. Research suggests these proteins are involved in the eukaryotic ribosomal 60S subunit. Here, investigators studied mutated REIL proteins in different species. The Cellometer Auto M10 analyzed cell size and concentration. The group discovered that these proteins are necessary to allow A. thaliana to grow in lower temperatures. Read the full publication here. 

A Novel NK Cell-Mediated Cytotoxicity Detection Method Using the Cellometer Vision

It's White Paper Wednesday! Read our featured white paper: A Novel NK Cell-Mediated Cytotoxicity Detection Method Using the Cellometer Vision As part of the innate immune system, natural killer (NK) cells are the primary form of defense against tumor cells and assorted pathogens [1]. A minor subset of NK cells (CD56brightCD16-) influence immune regulation via the secretion of cytokines interferon-γ and TNF-α [2]. The major subset of NK cells (CD56dimCD16+), however, directly lyse their targets [3]. Consequently, understanding the cytolytic functions of NK cells are key to understanding NK cell biology and function in adoptive immunotherapy.     Download our white [...]

Cellometer Auto T4 investigates dysfunction to pro-inflammatory cytokine toxicity and reactive oxygen species

The Institute of Clinical Biochemistry (Hanover, Germany) hypothesized that the pro-inflammatory cytokine environment seen in obese patients and those with obesity-related diabetes promotes the dysregulation of brown adipose tissues (BAT), which in turn intensifies diabetes progression. With a murine non-differentiated brown adipocyte cell line, researchers examined how exposure to pro-inflammatory cytokines impacted these cells. Cell density calculations were performed on the Cellometer Auto T4. The pro-inflammatory cytokines negatively impacted the cells’ viability, markedly increased reactive oxygen species production, and down-regulated markers specific to BAT such as UCP-1 and β-Klotho. The scientists concluded that pro-inflammatory cytokines lead to BAT death and [...]

Cellometer Vision helps undergraduates explore immunophenotyping in mouse bone marrow stem cells

A collaboration between Merrimack College (North Andover, MA) and Nexcelom Bioscience LLC used a Cellometer Vision in an undergraduate immunology classroom to explore differentiation, activation, cell surface marker expression and cytokine production in mouse bone marrow stem cells. The Cellometer Vision allowed the students to visualize and analyze their cells for various surface markers before designing experiments to explore the activity of natural anti-inflammatory compounds on TNF-alpha production. Read the full publication here. More than 50% of Nexcelom employees hold advanced degrees - so it's no surprise that we love collaborations with other scientists and institutions. Many of our academic [...]

Cellometer assists in creation of reference database of 1,800 quantified yeast proteins

Researchers at the University of Manchester (UK) created a reference database of 1,800 quantified S. cerevisiae proteins via specific isotope labeling and mass spectrometry. This is the largest database of its kind created to date, and the goal was to obtain a better understanding of intracellular protein concentrations, important information for those involved in molecular systems biology. The Cellometer was used to maintain accurate cell counts throughout experimentation. This database can now serve as a standard for the yeast proteome in all research going forward. Read the full publication here.  The Cellometer automated cell counters can provide many advantages in [...]

Cellometer Vision is used to characterize fungi suitable for pest management

Entomopathogenic fungi (ENPF)– those fungal species that use insect hosts to propagate – are of note in India due to their potential utility in pest management. The Indian Institute of Technology (New Delhi, India) obtained soil samples and isolated ENPF with the intention of studying how these types of fungi might be used to control the house fly, Musca domestica, an insect that causes many health problems in humans and animals in that country. The samples were then characterized molecularly and tested for pathogenicity against M. domestica. The Cellometer Vision was used to accurately maintain spore counts. Through this work, [...]

Go to Top